Effect of positive inotropic agents on the relation between oxygen consumption and systolic pressure volume area in canine left ventricle.

نویسندگان

  • H Suga
  • R Hisano
  • Y Goto
  • O Yamada
  • Y Igarashi
چکیده

We analyzed the effect of positive inotropic agents on the relation between left ventricular oxygen consumption and the systolic pressure-volume area. Pressure-volume area is a measure of total mechanical energy for ventricular contraction, and is a specific area in the ventricular pressure-volume diagram circumscribed by the end-systolic and end-diastolic pressure-volume relation curves and the systolic segment of the pressure-volume trajectory. Either epinephrine (1 microgram/kg per min, iv) or calcium ion (0.03 mEq/kg per min, iv) was administered to canine excised cross-circulated hearts. These agents increased an index of ventricular contractility, Emax, or the slope of the end-systolic pressure-volume line, by 70%. The regression lines of ventricular oxygen consumption on pressure-volume area in control and in enhanced contractile states were of the same formula: ventricular oxygen consumption (ml O2/beat per 100 g) equals A times pressure-volume area (mm Hg ml/beat per 100 g) plus a constant B. Coefficient A remained unchanged at 1.8 X 10(-5) ml oxygen/(mm Hg ml), but constant B increased from 0.03 ml oxygen/beat per 100 g by more than 50% with either agent. The reciprocal of A reflects the energy conversion efficiency for the total mechanical energy, and this efficiency remained near 36%. The increase in B was equal to the directly measured increment in ventricular oxygen consumption for mechanically unloaded contraction. The basal metabolism remained unchanged. We conclude that the augmented oxygen consumption under the acutely enhanced contractile state with either epinephrine or calcium was caused primarily by an increased energy utilization associated with the excitation-contraction coupling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equal oxygen consumption rates of isovolumic and ejecting contractions with equal systolic pressure-volume areas in canine left ventricle.

Left ventricle systolic pressure-volume area (PVA) has been found to be highly linearly correlated with cardiac oxygen consumption rate per beat (VO2) in a given canine heart with a stable inotropic background. PVA is a specific area in the pressure-volume (P-V) diagram that is bounded by the end-systolic and end-diastolic P-V relationship lines and the systolic segment of the P-V loop, consist...

متن کامل

Independence of myocardial oxygen consumption from pressure-volume trajectory during diastole in canine left ventricle.

We have found that myocardial oxygen consumption is linearly correlated with the systolic pressure-volume area in the canine left ventricle. This pressure-volume area is a specific area in the pressure-volume diagram that is circumscribed by the end-systolic pressure-volume relation line, the end-diastolic pressure-volume relation curve, and the systolic segment of the pressure-volume trajector...

متن کامل

Influence of Nitroprusside and Enoximone

Cardiotonic agents influence myocardial energy consumption by vasodilation, which may reduce energy demand, and by inotropism, which may increase it. To distinguish between the two effects, myocardial oxygen consumption must be analyzed in relation to its hemodynamic determinants. The coupling of myocardial oxygen consumption with its determinants was investigated in 22 patients with idiopathic...

متن کامل

Digital on-line computation of a predictor of cardiac oxygen consumption. Left ventricular systolic pressure volume area.

Left ventricular systolic pressure volume area (PVA) has been proposed as a reliable predictor of cardiac oxygen consumption per beat (VO2). PVA is the area in the pressure-volume (P-V) diagram that is circumscribed by the end-systolic and end-diastolic P-V relation curves and the systolic segment of the P-V loop trajectory. It represents the total mechanical energy required for the ventricle t...

متن کامل

Force-time integral decreases with ejection despite constant oxygen consumption and pressure-volume area in dog left ventricle.

We have shown that systolic pressure-volume area (PVA), which is equivalent to the total mechanical energy generated by ventricular contraction, correlates linearly with myocardial oxygen consumption, VO2, in canine left ventricle. Systolic force-time integral, FTI, also correlates with VO2. In this study, stroke volume was increased from 0 (isovolumic) in isolated cross-circulated canine left ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation research

دوره 53 3  شماره 

صفحات  -

تاریخ انتشار 1983